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The Generation of Minimal Triangle Graphs 

By Robert Bowen 

Let T be a finite set of triples (sets of three distinct elements). We define G (T) 
to be the 1-skeleton of the 2-complex formed by T (i.e. the graph with elements of 
triples of T as vertices and two vertices adjacent iff they are distinct and lie in a 
common member of T). T is a minimal triangle set (MTS) of order n if (i) G (T) has 
n vertices and is connected, and (ii) G (T - { t} ) satisfies (i) for no t in T. In such 
a case G (T) is a minimal triangle graph (MTG) of order n. Our problem is to gener- 
ate all (nonisomorphic) MTS's of a given order or equivalently (by Theorem 1) all 
MTG's of that order. 

THEOREM 1. If G is an MTG, then G = G(T) for a utnique MTS T. 
Proof. Suppose T and T' are MTS's with G = G(T) = G(T') and t C T, t f T'. 

Let t = {P1, P2, P3}. As t f T' and G = G(T'), the pairs {Pi, P2}, {Pi, P3}, and 
{P2, P3} are in some triples {P1 , P2, P4, {P1i, P3 , P5}, and {2P2 , P3 , P6 of T'. 
Then all of P1P4, P4P2, P2P6, P6P3, P3P6, and P5P1 are all edges of G not lying 
on triangle t. Hence PlP4P2P6P3P6Pl is a cycle in G (T - { t} ) and G (T - { t} ) is 
connected and has the same vertices as G (T), contradicting T an MTS. 

If P is a vertex of a graph G, we let Gp denote the graph formed by removing P 
and incident edges from G. 

LEMMA 1. If G is a connected graph, then Gp is connected for some vertex P of G. 
Proof. A spanning tree of G is a tree subgraph of G containing all the vertices 

of G. As G is connected, from [2] we know that G has a spanning tree K. Let P be 
a vertex of K of valency one. Then Kp is a spanning tree for Gp ; hence Gp is con- 
nected. 

LEMMA 2. If G (T) is connected, then G (T - { t} ) is connected for some t in T. 
Proof. Form the graph H (T) by taking members of T as vertices and letting a 

pair of them be adjacent iff they are distinct and have an element in common. Then 
H (T) is connected if G (T) is, for there is a path between two vertices in G (T) iff 
there is one in H (T) between elements of T containing the vertices. As G (T) is 
connected, so is H(T); and, by Lemma 1, so is H(T)t = H(T - {t}) for some t 
in T. Then G (T - t} ) is connected also. 

We note that the same proof applies to any complex; in any connected complex 
T there is some simplex t such that the 1-skeleton of T - { t} is connected and hence 
T - { t} is connected also. An alternate proof of Lemma 2 appears in [1]. 

THEOREM 2. Let T be an MITS of order n > 4. Then there is an MTS T' of order 
n - 1 or n - 2 such that T' = T - {t} for some t C T. 

Proof. Let t C T as in Lemma 2 and set T' = T -{t}. As T is an MTS and 
G (T') is connected, G (T') must have fewer vertices than G (T). As G (T) is con- 
nected and T' # 0, G (T') cannot have three fewer vertices than G (T). Hence 
G(T') has n - 1 or n - 2 vertices. Finally suppose t' C T', T" = T' - {t'}, with 
G (T") connected and having the same vertices as G (T'). Then G (T" u { t} ) = 
G (T - { t'} ) has the same vertices as G (T) and hence is not connected since T is an 
MTS. Since G (T") is connected, this means that t has no vertex in common with 
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G (T"). But G (T") has the same vertices as G (T"); hence three vertices of G (T) 
are iiot in G (T'), a contradiction 

Now suppose n > 4 and we have all MTS's of order n - 1 and n - 2. If we 
add a triple to those of order n - 2 with exactly two new vertices in all possible 
ways and add a triple with exactly one new vertex to those of order n - 1 in all 
possible ways, then by Theorem 2 we shall obtain all MTS's of order n. We are left 
with the problein of sorting out isomorphic MTS's. For this purpose a routine was 
developed for testing two graphs for isomnorphism (described in the next para- 
graph). As we generate an MTS T we compare G (T) against the graphs of the MTS's 
already generated. If G (T) is isomorphic to G (T*) with T* already generated, then 
Theorem 1 assures us that T and T* are isomorphic. Hence T is discarded in such a 
case. If no such T* has been generated, then T is new, T is added to the list of MTS's 
of order n, and G (T) is retained for future testing. 

The isomorphism routine handles connected graphs with 35 or fewer vertices. 
For P, Q vertices of a graph G let a(P, Q) = 1 if P and Q are adjacent and 0 
otherwise. Set bo (P) = 1 and bk+l (P) = ZQ a (P, Q)bk (Q) for all P. 'Note that 
bi (P) is just the valence of P. According to the numbers b1, b2 and b3 the vertex 
sets of each of the two graphs being tested are divided into classes and the classes 
of the two graphs are matched if possible. If a vertex is the only member of its class, 
it is matched with the corresponding vertex of the other graph. With a partial match- 
ing of vertices a few simple tests search for a local contradiction or a "forced" local 
extension. During these tests a desirable vertex is picked out for arbitrary matching 
in case this is necessary. After this vertex is matched, the process is repeated. We 
move up and down our "possibility tree" in the usual back-track method until a 
final contradiction or an isomorphism is attained. 

Computations were carried out on an IBM 7094. In the table below Ml (n) is the 
number of MTS's (or MTG's) of order n. We started from the single MTS of order 
3, the triangle. We generated those of order thirteen and less in approximately 
twenty minutes. In a test of the ismorphism routine, in four minutes isomorphisms 
were constructed between 9600 pairs of isomorphic triangular graphs with 12 ver- 
tices. M (n) was checked by hand for n > 7. 

n M1 (n) n Al (n) 
4 1 9 48 
5 2 10 117 
6 4 1 1 307 
7 9 12 821 
8 19 13 2277 

Order 4: Order5: Ki < I 

Order 6: 
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Generation of Triangulations of the Sphere 

By Robert Bowen and Stephen Fisk 

It is easily seen that there is only one triangulation of the sphere with four ver- 
tices and one with five. This paper concerns an algorithm for finding all (noniso- 
morphic) triangulations of the 2-sphere with N vertices from those with N - 1. 
"Triangulation" shall always refer to a triangulation of the 2-sphere. First we de- 
velop a method for generating all triangulations with N vertices which may yield 
several triangulations of the same isomorphism type, and then we describe an iso- 
morphism routine for elimninating these duplications. 

Let T be a triangulation with N _ 5 vertices, E edges, and F faces. Let Xk 
denote the number of vertices of T of valency k. Then 3F = 2E as each face is a 
triangle and each edge is on two faces, and 2E =E kXk as each edge is incident 
to two vertices. Hence 6F - 6E -2E = - kXk and by Euler's fornmula we 
have 

(1) 12 =6N+6F-6E=6N- ZkXk= >Xk(6-k). 

Since E Xk (6 -k) is positive, T must have a vertex of valency less than six. Be- 
cause every edge of T must lie on two distinct triangular faces, each vertex must 
have valency greater than two. Letting Q be a vertex of minimal valency, Q must 
have valency three, four, or five. 

Case 1. Suppose Q has valency three. Then, about Q, T has the form shown in 
Fig. 1. Removing Q and the edges QPk, we obtain a triangulation T' with N- 1 
vertices. Thus we obtain T if we add the point Q to the center of the face P1P2P3 
and add the edges QPk (k = 1, 2, 3). 

Case 2. Suppose Q has valency four. Then, about Q, T has the form shown in 
Fig. 2. By the Jordan curve theorem either P1 is not adjacent to P3 or P2 is not 
adjacent to P4; say P1 is not adjacent to P3. Then, removing Q and edges QPk 

(1 ? k ?_ 4) and adding edge PiP3 inside the quadrilateral P1P2P3P4, we obtain a 
triangulation T' with N - 1 vertices. The slight complication here is needed to 
insure that T' is a triangulation; for if Pi were adjacent to P3 in T, then T' would 
have multiple edges and would not be a triangulation. We now obtain T from T' 
by reversing the process. 

Case 3. Assume Q has valency five. We claim some Pk is adjacent to no Pi 
other than the two shown (Fig. 3). Otherwise P1 would be adjacent to P3 or P4, 

say P3. Then by the Jordan curve Theorem, P2 could be adjacent to neither P4 nor 
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